FORMAT 1

9. CONTACT HOURS PER WEI	EK: 2.5 LE ho	CTURE 1.	5 LAB hours /we	ek PRACTICUM hours /week
Note: # of credits are ba of lab in a science cours minutes of practicum=1 cr the syllabus. See <u>http://r</u> number of credits.	sed on contact hour e=1 credit. 1600 m edit. 2400-8000 m www.uaf.edu/uafgov,	rs. 800 minute minutes in non- inutes of inter /faculty/cd/crea	es of lecture=: science lab=1 mship=1 credit dits.html for	1 credit. 2400 minutes credit. 2400-4800 t. This must match with more information on
OTHER HOURS (specify type)	Students will spen assignments. This	d additional tim non-contact tim	ne in completing ne will vary by	g homework students.
10. COMPLETE CATALOG DESCR less, if possible):	IPTION including	dept., numbe	er, title and	l credits (50 words or
GEOS 222: Fundamentals of 3 Credits Offered Fall	of Geospatial Scienc	es		
This course is an introducti GIS and GPS). Fundamenta computer science, data form data collection using GPS, Prerequisites: GEOG 111 o	on to the principles all concepts include enats, map-reading ar photo-interpretation r GEOS 101 or perm	and applications electromagnetic ad map-making, , using image pr nission of instrue	s of geospatial s radiations, map etc. Practical rocessing and C actor. (2.5+1.5)	science (remote sensing, p projections, basic exercises include field GIS software packages.
			_	
11. COURSE CLASSIFICATION on Page 10 & 17 of th sheet.)	<i>IS:</i> (undergradua e manual. If jus	te courses on stification is	nly. Use appr s needed, at	coved criteria found tach on separate
H = Humanities Will this course be	used to fulfill	S = Social	Sciences	
for the baccalaureate core?				
0 = Oral Intensive Format	core requirements w = W	riting Intensiv Format	ve, 7	Natural Science, Format 8
12. COURSE REPEATABILITY:	able for credit?	YES	NO X]
Justification: India be repeated (for example, the con theme each time).	cate why the cour urse follows a di	fferent		
How many times may t	he course be repe	eated for crea	dit?	TIMES
If the course can be maximum number of cr	repeated with va edit hours that r	ariable credit may be earned	t, what is the for this con	he CREDITS
13. GRADING SYSTEM: Spec	ify only one. /FAIL:			
14. PREREQUISITS				
RESTRICTIONS ON ENROLLMENT	' L J5f any)			

If yes, give semester, year, course #, etc.: the nation.

21.	. POSITIVE AND NEGATIVE IMPACTS	
	Please specify positive and negative impacts on other courses, programs and	
	departments resulting from the proposed action.	

Positive Impacts:

F .	
6	
Ł	

1		
,		
.		
~ _		
-		
	ſ	

			;	i	
	-				
7 3 3 4 4 5					
1					
و هيز	^1 <u></u>				
* * •					

Ĩ	
()=	
ł	
L	
-	
1	
<u> </u>	
-	

Syllabus for GEOS/GEOG 222 - Fundamentals of Geospatial Sciences

1. Course information:

Title:	Fundamentals of Geospatial Sciences
Number:	GEOS 222; GEOG 222
Credits:	3
Prerequisites:	GEOG 111 or GEOS 101 or permission of instructor
Location:	Lectures in WRRB Computer Lab; Room 004
	Labs in WRRB Computer Lab; Room 004
Term:	Every Fall
Meeting time:	Lectures: Monday and Wednesday, 2.00 pm to 3.15 pm
	Lab: Monday and Wednesday, 3.15 pm to 4.00 pm

2. Instructor Information (Proposed):

Fall (<mark>Odd</mark> Years – Geography-lead instructor)				
Dave Verbyla		Donald Atwood		
Office:	O'Neill 366	Office:	GI-206, UAF	
Telephone:	907-4745553	Telephone:	907-4747380	
Email:	dlverbyla@alaska.edu	Email:	dkatwood@alaska.edu	
Office hrs:	ad hoc / by appointment	Office hrs:	ad hoc / by appointment	
Fall (<mark>Even</mark>	Years-Geology-lead instr	uctor)		
Fall (<mark>Even</mark> Anupma Pr	Years – Geology-lead instr akash	uctor) Donald Atv	vood	
Fall (Even Anupma Pr Office:	Years – Geology-lead instr <u>akash</u> WRRB-108E, UAF	uctor) Donald Atv Office:	<u>vood</u> GI-206, UAF	
Fall (Even Anupma Pr Office: Telephone:	Years – Geology-lead instr akash WRRB-108E, UAF 907-4741897	uctor) Donald Atv Office: Telephone:	<u>vood</u> GI-206, UAF 907-4747380	
Fall (Even Anupma Pr Office: Telephone: Email:	Years – Geology-lead instr akash WRRB-108E, UAF 907-4741897 prakash@gi.alaska.edu	uctor) <u>Donald Atv</u> Office: Telephone: Email:	<u>vood</u> GI-206, UAF 907-4747380 dkatwood@alaska.edu	
Fall (Even Anupma Pr Office: Telephone: Email: Office hrs:	Years – Geology-lead instr akash WRRB-108E, UAF 907-4741897 prakash@gi.alaska.edu ad hoc / by appointment	uctor) Donald Atv Office: Telephone: Email: Office hrs:	vood GI-206, UAF 907-4747380 dkatwood@alaska.edu ad hoc / by appointment	

3. Course readings/materials:

Course text book: In this class we will follow the following text book (required):

Title: Physical Principles of Remote SensingAuthor: W. G. ReesEdition: 2 edition (September 24, 2001)Publisher: Cambridge University Press;ISBN-10:0521669480ISBN-13:978-052166948

Besides this required text book, you will have access to all class power point lecture materials, lab instructions, and data sets required for your lab assignments. These will be posted on the class website. You are also encourage to refer to other books, journals and magazines available at the UAF library (see list below).

Recommended introductory books in geospatial sciences:

Geographic Information Systems and Science, Second Edition, by Paul Longley, Michael Goodchild, David Maguire, and David Rhind, John Wiley & Sons and ESRI Press, 2005, 534 pages. ISBN: 047087001X.

GIS Fundamentals, 3rd Edition, by Paul Bolstad, Atlas Books, ISBN: 978-0-9717647-2-9.

Getting to Know ArcGIS Desktop, by Tim Ormsby, Eileen Napoleon, Robert Burke, Carolyn Groessl and Laura Bowde, ESRI Press, 2010, 604 pages. ISBN: 9781589482609.

Getting Started with Geographic Information Systems, 5th edition, Keith C. Clarke, Pearson Prentice Hall, 2010, 384 pages. ISBN-10: 0131494988 | ISBN-13: 978-0131494985.

Recommended journals and magazines:

International Journal of GIS International Journal of Remote Sensing Geoinformatics Geospatial Solutions GIS Development GPS World

You are encouraged to make extensive use of UAF's investment in electronic journals. Familiarize yourself on the use of *Web of Science* and the *Goldmine* database of the Rasmuson library. There is a wealth of relevant literature there.

4. Course description:

This course provides students with an intr

Student Learning Outcomes: By the end of the course, students will be able to

Understand the fundamental principles in remote sensing imaging and geospatial data integration and analysis.

Search and download relevant geospatial data required for a certain project/purpose.

Visually interpret in a qualitative way a variety of images (optical, infrared, SAR) taken from airborne and satellite platforms.

Collect and import GPS data using handheld recreational mode GPS units.

Project digital data in different projection systems.

Compose a simple cartographically sound map which integrates GPS data, with other geospatial data (vector data; raster maps and images).

Appreciate how geospatial data can be applied in the real-world for hazard assessment, resource allocation, emergency management, change detection, and

9. Grading Policy:

Your grades will be based on several factors as detailed below:

15%: Lecture and lab participation (see course policy above)
20%: Lab assignments. Most labs require that you complete the lab work in class and show the results to the instructors/TA or submit the answer sheet that accompanies the lab instructions. Make sure that you answer all questions and submit the responses by the indicated deadline (see course policy above).
15%: Mid-term. Your mid-term will comprise of short questions/ multiple choice answers that you will complete in class as a 'closed-book' exam.
30%: Two homework assignments due in late October and late November. Homework assignment will vary from year to year. Students need to answer the questions independently. Grading will be based on the completeness, comprehensiveness, and demonstrated understanding of the fundamental concepts and applications of geospatial sciences. Late work will be penalized as stated in the course policy.

20%: Final exam. Will be a combination of multiple choice answers and an essay type answer on the topics covered throughout the semester.

Grading index followed in this class is given below (Numerical GPA equivalence of Grades as per University Regulation R10.04.09 are indicated in parenthesis)

11. Disabilities Services:

Should you have any special needs, please come and talk to us and we will work with you to accommodate your needs as best as possible. We will work with the UAF Office of Disability Services (208 WHITAKER BLDG, 474-5655) to provide reasonable accommodation to students with disabilities.

Class Schedule Week 1 Lecture 1 Introduction to Geospatial Sc (RS and GIS) Lab 1 Google; NASA WW; Alaska Mapped Lecture 2 Map Interpretation Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Week 3 Lecture 6 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 12 FNSB	GEOS 222 / GEOG 222 Fundamentals of Geospatial Sciences				
Week 1 Lecture 1 Introduction to Geospatial Sc (RS and GIS) Lab 1 Google; NASA WW; Alaska Mapped Lecture 2 Map Interpretation Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Lecture 6 Active and Passive Sensors Lab 5 Excel Lab with calculations Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 11 Mid term exam Lecture 12 GIS Analysis Lab 13 GIS Analysis Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week 7 Lecture 13 GIS Analysis L	Class Schedule				
Week 1 Lecture 1 Introduction to Geospatial Sc (RS and GIS) Lab 1 Google; NASA WW; Alaska Mapped Lecture 2 Map Interpretation Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 11 Revision/Discussion Lab 10 Lab with PhotoScan Week 6 Lecture 13 GI					
Lab 1 Google; NASA WW; Alaska Mapped Lecture 2 Map Interpretation Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 11 Mid term exam Lecture 12 GIS concepts (raster, vector, database) Lab 13 GIS Analysis Week 7 Lecture 13 GIS Analysis	Week 1	Lecture 1	Introduction to Geospatial Sc (RS and GIS)		
Lecture 2 Map Interpretation Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 7 Globes/ Balloons Lecture 8 Perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Lecture 10 Modern Ortho imaging Lab 11 Lab 10 Lab with PhotoScan Lecture 12 GIS concepts (raster, vector, database) Lab 12 FNSB GIS GIS Analysis Lab 13 Lab 12 FNSB GIS Gall Analysis (eg. making an FCC and NDVI) Lecture 14 DEM Lecture 14		Lab 1	Google; NASA WW; Alaska Mapped		
Lab 2 Reading Maps Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 7 Globes/ Balloons Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 12 Lab 13 GIS Analysis Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week 7 Lecture 14 DEM Lab 13 GIS Analysis (eg. making an FCC and NDVI) Lecture 14 <td< td=""><td></td><td>Lecture 2</td><td>Map Interpretation</td></td<>		Lecture 2	Map Interpretation		
Week 2 Lecture 3 Map Projections Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 12 Lab 12 FNSB GIS Week 7 Lecture 13 GIS Analysis Gand NDVI) Lecture 14 DEM Lab 13 GIS Analysis (eg. making an FCC and NDVI) Lecture 14 DEM		Lab 2	Reading Maps		
Lab 3 Reprojecting maps (using a global shapefile) Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 12 Lab 12 FNSB GIS Week 7 Lecture 13 GIS Analysis Lecture 14 Lecture 13 GIS Analysis (eg. making an FCC and NDVI) Lecture 14 DEM Lab 13 GIS Analysis (cg. making an FCC and NDVI)	Week 2	Lecture 3	Map Projections		
Lecture 4 Handheld GPS and Controls Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Lecture 10 Modern Ortho imaging Lab 11 Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 12 Lab 12 FNSB GIS Week 7 Lecture 13 GIS Analysis Lab 13 Lab 13 GIS Analysis (eg. making an FCC and NDVI) Lecture 14 DEM Lab 14 Lecture 15 Lidar Lab 15 Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week		Lab 3	Reprojecting maps (using a global shapefile)		
Lab 4 Geocaching and Measurement of controls Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 1 Mid term exam Lecture 12 GIS concepts (raster, vector, database) Lab 13 GIS Analysis Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week 8 Lecture 15 Lidar Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week 8 Lecture 16 SAR Lab 15 Global Mapper: Visualize point-clouds for Fairbanks		Lecture 4	Handheld GPS and Controls		
Week 3 Lecture 5 Waves and EM Spectrum Lab 5 Excel Lab with calculations Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 11 Mid term exam Lecture 12 GIS concepts (raster, vector, database) Lab 12 FNSB GIS Week 7 Lecture 13 Lab 13 GIS Analysis (eg. making an FCC and NDVI) Lecture 14 DEM Lab 15 Global Mapper: Visualize point-clouds for Fairbanks Lecture 15 Lidar Lab 16 MapReady Week 8 Lecture 17 Field data collection		Lab 4	Geocaching and Measurement of controls		
Lab 5Excel Lab with calculationsLecture 6Active and Passive SensorsLab 6Visual study of images from active/passive sensorsWeek 4Lecture 7Platforms (Satellites/Airborne)Lab 7Globes/ BalloonsLecture 8Perspectives and Scales (Nadir vs Oblique)Lab 8Examples of perspectives and scalesWeek 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS AnalysisLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 19Use hypercube to classify Fairbanks (clustering)	Week 3	Lecture 5	Waves and EM Spectrum		
Lecture 6 Active and Passive Sensors Lab 6 Visual study of images from active/passive sensors Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 11 Mid term exam Lecture 12 GIS concepts (raster, vector, database) Lab 12 FNSB GIS Week 7 Lecture 13 GIS Analysis Lab 14 ArcGIS to compute SRM, Slope, Aspect, HillShade Week 8 Lecture 15 Lidar Lab 15 Global Mapper: Visualize point-clouds for Fairbanks Lecture 16 SAR Lab 17 Map GPS points on a map Lecture 18 Cartography Lab 17 Map GPS points on a map Lecture 18 <td></td> <td>Lab 5</td> <td>Excel Lab with calculations</td>		Lab 5	Excel Lab with calculations		
Lab 6Visual study of images from active/passive sensorsWeek 4Lecture 7Platforms (Satellites/Airborne)Lab 7Globes/ BalloonsLecture 8Perspectives and Scales (Nadir vs Oblique)Lab 8Examples of perspectives and scalesWeek 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 6	Active and Passive Sensors		
Week 4 Lecture 7 Platforms (Satellites/Airborne) Lab 7 Globes/ Balloons Lecture 8 Perspectives and Scales (Nadir vs Oblique) Lab 8 Examples of perspectives and scales Week 5 Lecture 9 Aerial Photography and Photogrammetry Lab 9 Stereoscopy lab Lecture 10 Modern Ortho imaging Lab 10 Lab with PhotoScan Week 6 Lecture 11 Revision/Discussion Lab 11 Mid term exam Lecture 12 GIS concepts (raster, vector, database) Lab 12 FNSB GIS Week 7 Lecture 13 GIS Analysis<(eg. making an FCC and NDVI)		Lab 6	Visual study of images from active/passive sensors		
Lab 7Globes/ BalloonsLecture 8Perspectives and Scales (Nadir vs Oblique)Lab 8Examples of perspectives and scalesWeek 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 4	Lecture 7	Platforms (Satellites/Airborne)		
Lecture 8Perspectives and Scales (Nadir vs Oblique)Lab 8Examples of perspectives and scalesWeek 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 7	Globes/ Balloons		
Lab 8Examples of perspectives and scalesWeek 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 17Map GPS points on a mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 8	Perspectives and Scales (Nadir vs Oblique)		
Week 5Lecture 9Aerial Photography and PhotogrammetryLab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 8	Examples of perspectives and scales		
Lab 9Stereoscopy labLecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 5	Lecture 9	Aerial Photography and Photogrammetry		
Lecture 10Modern Ortho imagingLab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 9	Stereoscopy lab		
Lab 10Lab with PhotoScanWeek 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 10	Modern Ortho imaging		
Week 6Lecture 11Revision/DiscussionLab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 17MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 10	Lab with PhotoScan		
Lab 11Mid term examLecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 6	Lecture 11	Revision/Discussion		
Lecture 12GIS concepts (raster, vector, database)Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 11	Mid term exam		
Lab 12FNSB GISWeek 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 12	GIS concepts (raster, vector, database)		
Week 7Lecture 13GIS AnalysisLab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 12	FNSB GIS		
Lab 13GIS Analysis (eg. making an FCC and NDVI)Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 7	Lecture 13	GIS Analysis		
Lecture 14DEMLab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 13	GIS Analysis (eg. making an FCC and NDVI)		
Lab 14ArcGIS to compute SRM, Slope, Aspect, HillShadeWeek 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 14	DEM		
Week 8Lecture 15LidarLab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 14	ArcGIS to compute SRM, Slope, Aspect, HillShade		
Lab 15Global Mapper: Visualize point-clouds for FairbanksLecture 16SARLab 16MapReadyWeek 9Lecture 17Lab 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 8	Lecture 15	Lidar		
Lecture 16 SAR Lab 16 MapReady Week 9 Lecture 17 Field data collection Lab 17 Map GPS points on a map Lecture 18 Cartography Lab 18 Add WMS base to earlier map Week 10 Lecture 19 Spectral Signatures Lab 19 Use hypercube to play with RGB Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)		Lab 15	Global Mapper: Visualize point-clouds for Fairbanks		
Lab 16MapReadyWeek 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lecture 16	SAR		
Week 9Lecture 17Field data collectionLab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)		Lab 16	MapReady		
Lab 17Map GPS points on a mapLecture 18CartographyLab 18Add WMS base to earlier mapWeek 10Lecture 19Lab 19Spectral SignaturesLab 19Use hypercube to play with RGBLecture 20Landcover MappingLab 20Use hypercube to classify Fairbanks (clustering)	Week 9	Lecture 17	Field data collection		
Lecture 18 Cartography Lab 18 Add WMS base to earlier map Week 10 Lecture 19 Spectral Signatures Lab 19 Use hypercube to play with RGB Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)		Lab 17	Map GPS points on a map		
Lab 18 Add WMS base to earlier map Week 10 Lecture 19 Spectral Signatures Lab 19 Use hypercube to play with RGB Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)		Lecture 18	Cartography		
Week 10 Lecture 19 Spectral Signatures Lab 19 Use hypercube to play with RGB Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)		Lab 18	Add WMS base to earlier map		
Lab 19 Use hypercube to play with RGB Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)	Week 10	Lecture 19	Spectral Signatures		
Lecture 20 Landcover Mapping Lab 20 Use hypercube to classify Fairbanks (clustering)		Lab 19	Use hypercube to play with RGB		
Lab 20 Use hypercube to classify Fairbanks (clustering)		Lecture 20	Landcover Mapping		
		Lab 20	Use hypercube to classify Fairbanks (clustering)		
Week 11 Lecture 21 Change Detection	Week 11	Lecture 21	Change Detection		
Lab 21 Use Arc GIS for change detection (Amazon)		Lab 21	Use Arc GIS for change detection (Amazon)		
Lecture 22 Applications of Change detection		Lecture 22	Applications of Change detection		

	Lab 22	Several examples (coastal; urban; thermal; wetland)
Week 12	Lecture 23	Thanksgiving
	Lab 23	Thanksgiving
	Lecture 24	Thanksgiving
	Lab 24	Thanksgiving
Week 13	Lecture 25	Cadastral Applications
	Lab 25	Cadastral Lab with Arc GIS
	Lecture 26	Public Safety; Emergency Management
	Lab 26	Vehicle routing lab
Week 14	Lecture 27	Flooding / Landslides
	Lab 27	Inundation Analysis (H&H modeling)
	Lecture 28	Final Exams
	Lab 28	Final Exams